Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Uk Lee* and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{V}-\mathrm{O})=0.003 \AA$
H -atom completeness 0%
R factor $=0.046$
$w R$ factor $=0.128$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

A novel monoprotonated decavanadate, $\mathrm{K}_{\mathbf{4}} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{\mathbf{2 8}}\right] \cdot \mathbf{1 0} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

Abstract

The novel monoprotonated decavanadate species $\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right]^{5-}$ has been prepared and characterized. The title compound, tetrapotassium sodium hydrogendecavanadate decahydrate, crystallizes in the monoclinic system in space group $P 2 / n$, with the polyanion having twofold crystallographic symmetry. The protonated O atom in the polyanion was identified from the elongation of the $\mathrm{V}-\mathrm{O}$ bond and the shortest $\mathrm{O} \cdots \mathrm{O}$ inter-polyanion distance. The H atom is disordered around a twofold axis that relates two hydrogenbonded polyanions.

Comment

The preparation of decavanadates which have higher symmetry or novel protonated species in the solid state is a crystallographically interesting and significant challenge. Protonated alkali metal decavanadate species, viz. $\mathrm{Cs}_{4}\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Rigotti et al., 1987), $\mathrm{Na}_{3}\left[\mathrm{H}_{3} \mathrm{~V}_{10} \mathrm{O}_{28}\right]$-$15 \mathrm{H}_{2} \mathrm{O}$ (Duraisamy et al., 2000) and $\mathrm{Na}_{2}\left[\mathrm{H}_{4} \mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Zhang et al., 1985), have been reported. The $\left[\mathrm{H}_{n} \mathrm{~V}_{10} \mathrm{O}_{28}\right]^{(6-n)}$ species, where $n=2,3$ and 4 , have also been characterized

Figure 1
A view of (I) with 30% probability displacement ellipsoids, showing the coordination of the cations and the structure of the anion. [Symmetry codes: (i) $\frac{3}{2}-x, y, \frac{3}{2}-z$; (ii) $\frac{3}{2}-x, y, \frac{1}{2}-z$; (iii) $1-x, 2-y, 1-z$; (iv) $x-\frac{1}{2}, 2-y, z-\frac{1}{2} ;(\mathrm{v}) x-\frac{1}{2}, 1-y, z-\frac{1}{2}$; (vi) $1-x, 1-y, 1-z$; (vii) $x-1, y, z$.]

Received 6 January 2004 Accepted 13 January 2004 Online 17 January 2004

Figure 2
A polyhedral representation of the polyanions and coordinated $\mathrm{Na}, \mathrm{K} 1$ and K2 ions in (I), viewed along the b axis [symmetry code: (i) $\frac{3}{2}-x, y$, $\left.\frac{3}{2}-z\right]$.
(Nakamura \& Ozeki, 2001) as a series of tetraalkylammonium salts. Although the ideal symmetry of the decavanadate anion is $D_{2 h}(\mathrm{mmm})$, all the decavanadates that have been reported to date show only $C_{1}(1)$ or $C_{i}(\overline{1})$ symmetry. The monoprotonated decavanadate species, $\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right]^{5-}$, has been characterized in solution (Baes \& Mesmer, 1976) but has not yet been reported in the solid state. The title double salt, tetrapotassium sodium hydrogendecavanadate decahydrate, $\mathrm{K}_{4} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$, (I), was obtained as a result of an attempt to prepare a high-symmetry decavanadate anion. In the future, we plan to report the other double salt decavanadate, $\mathrm{K}_{2} \mathrm{Na}_{4}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$, containing a $C_{2 h}(2 / m)$ symmetry decavanadate anion, which has space group $C 2 / m$.

Fig. 1 shows the structure of (I) and the labelling scheme for the decavanadate anion. The asymmetric unit in the polyanion consists of five independent $\left[\mathrm{VO}_{6}\right]$ octahedra sharing edges, and the crystallographic twofold axis imposed by the monoclinic $P 2 / n$ space group generates the other half of the polyanion. The $\mathrm{V} \cdots \mathrm{V}$ distances are in the range 3.054 (2)3.206 (1) \AA; the V-O bond lengths are given in Table 1. The O atoms in the anion are the same terminal and bridging types as those classified in the previous report by Lee et al. (2003). The $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ framework has also been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

The protonated O atom in the polyanion of (I) was identified from the elongation of the $\mathrm{V}-\mathrm{O}$ bond length and the shortest inter-polyanion distance. The V3-Ob10 and V4$\mathrm{O} b 10$ bond lengths are 1.917 (4) and 1.908 (3) A., respectively. These values are longer than the similar bond lengths V2$\mathrm{O} b 7, \mathrm{~V} 5-\mathrm{O} b 7, \mathrm{~V} 2-\mathrm{O} b 9$ and $\mathrm{V} 4-\mathrm{O} b 9$ (mean value $1.846 \AA$). This tendency was also found in previously reported
protonated decavanadates. The extent of the lengthening is reduced because of disorder of the H atom. The shortest interpolyanion distance $\mathrm{O} b 10-\mathrm{Ob} 10(1-x, 1-y, 1-z)$ is 3.025 (7) \AA. This hydrogen bond is significantly longer than in the other protonated cases because this polyanion has only one hydrogen bond, via the positionally disordered H atom between the two Ob10 atoms. From these results, it can be concluded that half the $\mathrm{O} b 10$ atoms are protonated, as required by the stoichiometry.

The Na^{+}ion and water molecules OW 2 and OW 3 lie on the twofold axis in space group $P 2 / n$. The $\mathrm{K}^{+} 1$ and $\mathrm{K}^{+} 2$ ions are coordinated by nine and eight O atoms, respectively, viz. $\left[\mathrm{K} 1(\mathrm{O} b)(\mathrm{O} t)_{4}(\mathrm{OW})_{4}\right]$ and $\left[\mathrm{K} 2(\mathrm{O} t)_{5}(\mathrm{OW})_{3}\right]$, and the Na^{+}ion is coordinated by six water molecules of crystallization.

Fig. 2 shows a representation of a polyhedral model for the two-dimensional network of the decavanadate and the K1, K2 and Na clusters coordinated by $\mathrm{O}_{\text {polyanion }}$ or $\mathrm{O}_{\text {water }}$ atoms. The decavanadate anion is surrounded by $\mathrm{K}^{+} 1, \mathrm{~K}^{+} 2$ and Na^{+}ions.

Fig. 3 shows the possible hydrogen-bond interactions between the polyanions. The water molecules of crystallization are located in a way that allows them to form hydrogen-bonds. A list of possible hydrogen bonds below $3.1 \AA$ is given in Table 1.

Experimental

Compound (I) was obtained by mixing hot aqueous solutions of $\mathrm{KVO}_{3}(2.0 \mathrm{~g}, 30 \mathrm{ml})$ and $\mathrm{NaCl}(1.0 \mathrm{~g}, 20 \mathrm{ml})$ and quickly adjusting the pH to about 1.7 by adding $3 \mathrm{M} \mathrm{HNO}_{3}$ dropwise while stirring vigorously. The solution was concentrated to about 20 ml in a water bath. After 1 d , pale-brown rectangular plate crystals of (I) were isolated at room temperature.

Crystal data

$\mathrm{K}_{4} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1317.96$
Monoclinic, $P 2 / n$
$a=10.804$ (2) \AA
$b=11.034$ (2) \AA
$c=13.748$ (3) \AA
$\beta=95.78$ (2) ${ }^{\circ}$
$V=1630.6(6) \AA^{3}$
$Z=2$
$D_{x}=2.684 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=9.5-10.4^{\circ}$
$\mu=3.38 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Rectangular plate, pale brown $0.58 \times 0.48 \times 0.07 \mathrm{~mm}$

Data collection

Stoe STADI4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1996)
$T_{\text {min }}=0.162, T_{\text {max }}=0.772$
3731 measured reflections
3731 independent reflections
2768 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 13$
$k=0 \rightarrow 14$
$l=0 \rightarrow 17$
3 standard reflections frequency: 60 min intensity decay: 3.6\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.128$
$S=1.15$
3731 reflections
241 parameters
H atoms not located

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0524 P)^{2}\right. \\
&+4.4779 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.83 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths and possible hydrogen-bond distances (\AA).

V1-Oh1	2.085 (3)	K1-OW1	2.808 (5)
V1-Oh1 ${ }^{\text {i }}$	2.129 (3)	K1-OW2	2.962 (1)
$\mathrm{V} 1-\mathrm{Oc} 2$	1.939 (3)	K1-OW4 $4^{\text {iii }}$	3.167 (5)
$\mathrm{V} 1-\mathrm{Oc} 3$	1.929 (3)	$\mathrm{K} 1-\mathrm{OW} 5^{\text {iii }}$	3.073 (6)
V1-Ob4	1.691 (3)	$\mathrm{K} 2-\mathrm{O} t 11^{\text {v }}$	2.925 (4)
V1-Ob6	1.684 (3)	$\mathrm{K} 2-\mathrm{O} t 12$	2.773 (4)
$\mathrm{V} 2-\mathrm{O} h 1$	2.343 (3)	$\mathrm{K} 2-\mathrm{Ot} 13^{\text {iii }}$	3.374 (4)
$\mathrm{V} 2-\mathrm{O} b 4^{\text {i }}$	2.036 (3)	$\mathrm{K} 2-\mathrm{Ot} 13^{\text {vi }}$	2.906 (4)
V2-Ob5	1.827 (3)	$\mathrm{K} 2-\mathrm{O} t 14^{\text {vii }}$	3.032 (4)
V2-Ob7	1.884 (4)	K2-OW3	3.114 (2)
V2-Ob 9	1.881 (4)	K2-OW4	3.105 (5)
V2-Ot11	1.607 (3)	K2-OW6	2.858 (5)
V3-Oh1	2.292 (3)	$\mathrm{Na}-\mathrm{OW} 2{ }^{\text {iii }}$	2.390 (6)
V3-Ob5	1.832 (3)	Na-OW3	2.348 (7)
V3-Ob6	2.051 (3)	$\mathrm{Na}-\mathrm{OW} 4^{\text {v }}$	2.387 (4)
V3-Ob8	1.871 (4)	Na-OW4	2.387 (4)
V3-Ob10	1.917 (4)	$\mathrm{Na}-\mathrm{OW} 5^{\text {v }}$	2.325 (4)
V3-Ot12	1.603 (3)	Na-OW5	2.325 (4)
V4-Oh1	2.263 (3)	OW1 \cdots OW6 ${ }^{\text {viii }}$	2.839 (6)
$\mathrm{V} 4-\mathrm{Oc} 2$	2.021 (3)	$\mathrm{O} W 1 \cdots \mathrm{O} b 9^{\text {iv }}$	2.845 (5)
$\mathrm{V} 4-\mathrm{O} c 2^{\mathrm{i}}$	1.964 (3)	OW1 . ${ }^{\text {OW }} 6^{\text {iv }}$	2.864 (7)
V4-Ob 9	1.790 (3)	$\mathrm{O} W 2 \cdots \mathrm{Ob} 4^{\text {ix }}$	2.938 (3)
V4-Ob10	1.908 (3)	OW2 \cdots OW $1^{\text {ix }}$	3.057 (6)
V4-Ot14	1.608 (4)	OW3 . . ${ }^{\text {Ob5 }}$	2.911 (4)
V5-Oh1	2.273 (3)	OW3 \cdots Ob5 ${ }^{\text {v }}$	2.911 (4)
V5-Oc3	1.997 (3)	OW3...OW6	3.069 (7)
$\mathrm{V} 5-\mathrm{O} 3^{\mathrm{i}}$	1.996 (3)	OW3 $\cdots \mathrm{OW}^{\text {v }}$	3.069 (7)
V5-Ob7	1.827 (3)	$\mathrm{OW} 4-\mathrm{Oc} 3^{\text {iii }}$	2.919 (5)
V5-Ob8	1.814 (3)	OW4 \cdots Ob8	2.827 (5)
V5-Ot13	1.612 (4)	$\mathrm{OW} 4 \cdots \mathrm{Ob} 8^{\text {iii }}$	3.068 (5)
$\mathrm{K} 1-\mathrm{O} b 6$	2.838 (3)	OW5 . . Ob7	2.796 (5)
$\mathrm{K} 1-\mathrm{O} t 11^{\text {ii }}$	2.970 (4)	$\mathrm{OW} 5 \cdots \mathrm{O} 7^{\mathrm{x}}$	2.771 (5)
$\mathrm{K} 1-\mathrm{O} t 12$	3.048 (4)	OW6 $\cdots \mathrm{Oc} 2^{\text {iv }}$	2.738 (5)
$\mathrm{K} 1-\mathrm{Ot} 13^{\text {iii }}$	2.901 (4)	$\mathrm{O} b 10 \cdots \mathrm{O} b 10^{\text {iv }}$	3.025 (7)
$\mathrm{K} 1-\mathrm{O} t 14^{\text {iv }}$	2.932 (4)		

Symmetry codes: (i) $\frac{3}{2}-x, y, \frac{3}{2}-z$; (ii) $x-1, y, z$; (iii) $1-x, 2-y, 1-z$; (iv) $1-x, 1-y, 1-z$; (v) $\frac{2}{2}-x, y, \frac{1}{2}-z$; (vi) $x-\frac{1}{2}, 2-y, z-\frac{1}{2}$; (vii) $x-\frac{1}{2}, 1-y, z-\frac{1}{2}$; (viii) $x-\frac{1}{2}, 1-y, \frac{1}{2}+z$; (ix) $\frac{1}{2}-x, y, \frac{3}{2}-z ;(\mathrm{x}) 2-x, 2-y, 1-z$.

H atoms were not located. The H atoms on $\mathrm{O} W 2$, OW3 and OW4 could not be positioned geometrically or located in an electron density map because they are coordinated to two K^{+}and one Na^{+}. Reasonable H -atom positions for OW 1 and OW6 could also not be determined, because electron-density peaks in this region gave short $D-\mathrm{H} \cdots \mathrm{H}-D$ distances of about $1.7 \AA$. The H atom of $\mathrm{O} b 10-\mathrm{H}$ could not be located from the electron density maps; this H atom is disordered. The highest peak in the difference map is $0.88 \AA$ from OW5, and the largest hole is $0.69 \AA$ from V3.

Data collection: STADI4 (Stoe, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.

Figure 3
A possible arrangement of the interpolyanion hydrogen bond in (I). [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $\frac{3}{2}-x, y, \frac{3}{2}-z$; (iii) $\frac{1}{2}+x$, $1-y, \frac{1}{2}+z$.]

Baes, C. F. \& Mesmer, R. E. (1976). The Hydrolysis of Cations, pp. 201-210 and 253-257. New York: Wiley Press.
Duraisamy, T., Ramanan, A. \& Vittal, J. J. (2000). Cryst. Eng. 3, 237-250.
Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lee, U., Jung, Y. H. \& Joo, H.-C. (2003). Acta Cryst. E59, i72-i74.
Nakamura, S. \& Ozeki, T. (2001). J. Chem. Soc. Dalton Trans. pp. 472-480.
Nowogrocki, G., Baudrin, E., Denis, S. \& Touboul, M. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011-1026.
Rigotti, G., Rivero, B. E. \& Castellano, E. E. (1987). Acta Cryst. C43, 197-201. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). STADI4, X-RED and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Zhang, Z., Shao, M., Zhang, L. \& Bai, C. (1985). Acta Sci. Nat. Univ. Pekin. 3, 65-67.

