inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Uk Lee* and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(V-O) = 0.003 \text{ Å}$ H-atom completeness 0% R factor = 0.046 wR factor = 0.128 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A novel monoprotonated decavanadate, $K_4Na[HV_{10}O_{28}]$ ·10H₂O

The novel monoprotonated decavanadate species $[HV_{10}O_{28}]^{5-}$ has been prepared and characterized. The title compound, tetrapotassium sodium hydrogendecavanadate decahydrate, crystallizes in the monoclinic system in space group P2/n, with the polyanion having twofold crystallographic symmetry. The protonated O atom in the polyanion was identified from the elongation of the V–O bond and the shortest O···O inter-polyanion distance. The H atom is disordered around a twofold axis that relates two hydrogenbonded polyanions.

Received 6 January 2004 Accepted 13 January 2004 Online 17 January 2004

Comment

The preparation of decavanadates which have higher symmetry or novel protonated species in the solid state is a crystallographically interesting and significant challenge. Protonated alkali metal decavanadate species, *viz*. Cs₄[H₂V₁₀O₂₈]·4H₂O (Rigotti *et al.*, 1987), Na₃[H₃V₁₀O₂₈]·-15H₂O (Duraisamy *et al.*, 2000) and Na₂[H₄V₁₀O₂₈]·14H₂O (Zhang *et al.*, 1985), have been reported. The [H_nV₁₀O₂₈]⁽⁶⁻ⁿ⁾ species, where n = 2, 3 and 4, have also been characterized

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved A view of (I) with 30% probability displacement ellipsoids, showing the coordination of the cations and the structure of the anion. [Symmetry codes: (i) $\frac{3}{2} - x$, y, $\frac{3}{2} - z$; (ii) $\frac{3}{2} - x$, y, $\frac{1}{2} - z$; (iii) 1 - x, 2 - y, 1 - z; (iv) $x - \frac{1}{2}$, 2 - y, $z - \frac{1}{2}$; (v) $x - \frac{1}{2}$, 1 - y, $z - \frac{1}{2}$; (vi) 1 - x, 1 - y, 1 - z; (vii) x - 1, y, z.]

Figure 2

A polyhedral representation of the polyanions and coordinated Na, K1 and K2 ions in (I), viewed along the b axis [symmetry code: (i) $\frac{3}{2} - x$, y, $\frac{3}{2} - z$].

(Nakamura & Ozeki, 2001) as a series of tetraalkylammonium salts. Although the ideal symmetry of the decavanadate anion is D_{2h} (mmm), all the decavanadates that have been reported to date show only C_1 (1) or C_i ($\overline{1}$) symmetry. The monoprotonated decavanadate species, $[HV_{10}O_{28}]^{5-}$, has been characterized in solution (Baes & Mesmer, 1976) but has not yet been reported in the solid state. The title double salt, tetrapotassium sodium hydrogendecavanadate decahydrate, $K_4Na[HV_{10}O_{28}]$ ·10H₂O, (I), was obtained as a result of an attempt to prepare a high-symmetry decavanadate anion. In the future, we plan to report the other double salt decavanadate, $K_2Na_4[V_{10}O_{28}]$ ·18H₂O, containing a C_{2h} (2/m) symmetry decavanadate anion, which has space group C2/m.

Fig. 1 shows the structure of (I) and the labelling scheme for the decavanadate anion. The asymmetric unit in the polyanion consists of five independent [VO₆] octahedra sharing edges, and the crystallographic twofold axis imposed by the monoclinic P2/n space group generates the other half of the polyanion. The V···V distances are in the range 3.054(2)-3.206 (1) Å; the V–O bond lengths are given in Table 1. The O atoms in the anion are the same terminal and bridging types as those classified in the previous report by Lee et al. (2003). The $[V_{10}O_{28}]^{6-}$ framework has also been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

The protonated O atom in the polyanion of (I) was identified from the elongation of the V–O bond length and the shortest inter-polyanion distance. The V3-Ob10 and V4-Ob10 bond lengths are 1.917 (4) and 1.908 (3) Å, respectively. These values are longer than the similar bond lengths V2-Ob7, V5-Ob7, V2-Ob9 and V4-Ob9 (mean value 1.846 Å). This tendency was also found in previously reported

protonated decavanadates. The extent of the lengthening is reduced because of disorder of the H atom. The shortest interpolyanion distance Ob10 - Ob10(1 - x, 1 - y, 1 - z) is 3.025 (7) Å. This hydrogen bond is significantly longer than in the other protonated cases because this polyanion has only one hydrogen bond, via the positionally disordered H atom between the two Ob10 atoms. From these results, it can be concluded that half the Ob10 atoms are protonated, as required by the stoichiometry.

The Na⁺ ion and water molecules OW2 and OW3 lie on the twofold axis in space group P2/n. The K⁺1 and K⁺2 ions are coordinated by nine and eight O atoms, respectively, viz. $[K1(Ob)(Ot)_4(OW)_4]$ and $[K2(Ot)_5(OW)_3]$, and the Na⁺ ion is coordinated by six water molecules of crystallization.

Fig. 2 shows a representation of a polyhedral model for the two-dimensional network of the decavanadate and the K1, K2 and Na clusters coordinated by Opolyanion or Owater atoms. The decavanadate anion is surrounded by K⁺1, K⁺2 and Na⁺ ions.

Fig. 3 shows the possible hydrogen-bond interactions between the polyanions. The water molecules of crystallization are located in a way that allows them to form hydrogen-bonds. A list of possible hydrogen bonds below 3.1 Å is given in Table 1.

Experimental

Compound (I) was obtained by mixing hot aqueous solutions of KVO₃ (2.0 g, 30 ml) and NaCl (1.0 g, 20 ml) and quickly adjusting the pH to about 1.7 by adding 3 M HNO₃ dropwise while stirring vigorously. The solution was concentrated to about 20 ml in a water bath. After 1 d, pale-brown rectangular plate crystals of (I) were isolated at room temperature.

Crystal data

-	
$K_4Na[HV_{10}O_{28}]\cdot 10H_2O$	$D_x = 2.684 \text{ Mg m}^{-3}$
$M_r = 1317.96$	Mo $K\alpha$ radiation
Monoclinic, $P2/n$	Cell parameters from 25
a = 10.804 (2) Å	reflections
b = 11.034 (2) Å	$\theta = 9.5 - 10.4^{\circ}$
c = 13.748 (3) Å	$\mu = 3.38 \text{ mm}^{-1}$
$\beta = 95.78 \ (2)^{\circ}$	T = 298 (2) K
$V = 1630.6 (6) \text{ Å}^3$	Rectangular plate, pale brown
Z = 2	$0.58 \times 0.48 \times 0.07 \text{ mm}$

Data collection

Stoe STADI4 diffractometer $\omega/2\theta$ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996) $T_{\rm min}=0.162,\;T_{\rm max}=0.772$ 3731 measured reflections 3731 independent reflections 2768 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.128$ S = 1.153731 reflections 241 parameters H atoms not located

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -14 \rightarrow 13$ $k = 0 \rightarrow 14$ $l = 0 \rightarrow 17$ 3 standard reflections frequency: 60 min intensity decay: 3.6%

 $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2]$ + 4.4779P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths and possible hydrogen-bond distances (Å).				
V1-Oh1	2.085 (3)	K1-OW1	2.808 (5)	
$V1 - Oh1^i$	2.129 (3)	K1-OW2	2.962 (1	
V1–Oc2	1.939 (3)	K1-OW4 ⁱⁱⁱ	3.167 (5	
V1–Oc3	1.929 (3)	K1-OW5 ⁱⁱⁱ	3.073 (6)	
V1-Ob4	1.691 (3)	$K2 - Ot11^{v}$	2.925 (4)	
V1-Ob6	1.684 (3)	K2-Ot12	2.773 (4)	
V2-Oh1	2.343 (3)	$K2 - Ot13^{iii}$	3.374 (4)	
V2–Ob4 ⁱ	2.036 (3)	$K2 - Ot13^{vi}$	2.906 (4)	
V2-Ob5	1.827 (3)	$K2 - Ot14^{vii}$	3.032 (4)	
V2-Ob7	1.884 (4)	K2–OW3	3.114 (2)	
V2-Ob9	1.881 (4)	K2-OW4	3.105 (5)	
V2-Ot11	1.607 (3)	K2-OW6	2.858 (5)	
V3-Oh1	2.292 (3)	Na-OW2 ⁱⁱⁱ	2.390 (6)	
V3-Ob5	1.832 (3)	Na-OW3	2.348 (7	
V3-Ob6	2.051 (3)	Na-OW4 ^v	2.387 (4)	
V3-Ob8	1.871 (4)	Na-OW4	2.387 (4)	
V3-Ob10	1.917 (4)	Na-OW5 ^v	2.325 (4)	
V3-Ot12	1.603 (3)	Na-OW5	2.325 (4)	
V4-Oh1	2.263 (3)	$OW1 \cdots OW6^{viii}$	2.839 (6)	
V4–Oc2	2.021 (3)	$OW1 \cdots Ob9^{iv}$	2.845 (5)	
V4–Oc2 ⁱ	1.964 (3)	$OW1 \cdots OW6^{iv}$	2.864 (7)	
V4-Ob9	1.790 (3)	$OW2 \cdots Ob4^{ix}$	2.938 (3)	
V4-Ob10	1.908 (3)	$OW2 \cdot \cdot \cdot OW1^{ix}$	3.057 (6)	
V4-Ot14	1.608 (4)	$OW3 \cdots Ob5$	2.911 (4)	
V5-Oh1	2.273 (3)	$OW3 \cdots Ob5^{v}$	2.911 (4)	
V5–Oc3	1.997 (3)	$OW3 \cdots OW6$	3.069 (7)	
$V5-Oc3^{i}$	1.996 (3)	$OW3 \cdots OW6^{v}$	3.069 (7)	
V5-Ob7	1.827 (3)	$OW4 - Oc3^{iii}$	2.919 (5)	
V5-Ob8	1.814 (3)	$OW4 \cdots Ob8$	2.827 (5)	
V5-Ot13	1.612 (4)	$OW4 \cdots Ob8^{iii}$	3.068 (5)	
K1-Ob6	2.838 (3)	$OW5 \cdots Ob7$	2.796 (5)	
$K1 - Ot11^n$	2.970 (4)	$OW5 \cdots Ob7^{x}$	2.771 (5)	
K1 - Ot12	3.048 (4)	$OW6 \cdots Oc2^{iv}$	2.738 (5)	
$K1 - Ot13^{m}$	2.901 (4)	$Ob10 \cdot \cdot \cdot Ob10^{iv}$	3.025 (7)	
$K1 - Ot14^{iv}$	2.932 (4)			

Symmetry codes: (i) $\frac{3}{2} - x, y, \frac{3}{2} - z$; (ii) x - 1, y, z; (iii) 1 - x, 2 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) $\frac{3}{2} - x, y, \frac{1}{2} - z$; (vi) $x - \frac{1}{2}, 2 - y, z - \frac{1}{2}$; (vii) $x - \frac{1}{2}, 1 - y, z - \frac{1}{2}$; (viii) $x - \frac{1}{2}, 1 - y, \frac{1}{2} - z, y, \frac{3}{2} - z$; (x) 2 - x, 2 - y, 1 - z.

H atoms were not located. The H atoms on OW2, OW3 and OW4 could not be positioned geometrically or located in an electron density map because they are coordinated to two K⁺ and one Na⁺. Reasonable H-atom positions for OW1 and OW6 could also not be determined, because electron-density peaks in this region gave short $D-H \cdots H-D$ distances of about 1.7 Å. The H atom of Ob10-H could not be located from the electron density maps; this H atom is disordered. The highest peak in the difference map is 0.88 Å from OW5, and the largest hole is 0.69 Å from V3.

Data collection: STADI4 (Stoe, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.

Figure 3

A possible arrangement of the interpolyanion hydrogen bond in (I). [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $\frac{3}{2} - x$, y, $\frac{3}{2} - z$; (iii) $\frac{1}{2} + x$, $1 - y, \frac{1}{2} + z.$]

Baes, C. F. & Mesmer, R. E. (1976). The Hydrolysis of Cations, pp. 201-210 and 253-257. New York: Wiley Press.

Duraisamy, T., Ramanan, A. & Vittal, J. J. (2000). Cryst. Eng. 3, 237-250.

Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lee, U., Jung, Y. H. & Joo, H.-C. (2003). Acta Cryst. E59, i72-i74.

Nakamura, S. & Ozeki, T. (2001). J. Chem. Soc. Dalton Trans. pp. 472-480. Nowogrocki, G., Baudrin, E., Denis, S. & Touboul, M. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011-1026.

Rigotti, G., Rivero, B. E. & Castellano, E. E. (1987). Acta Cryst. C43, 197-201. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Zhang, Z., Shao, M., Zhang, L. & Bai, C. (1985). Acta Sci. Nat. Univ. Pekin. 3, 65-67.